
August 27, 1993
Virginia Center of Excellence for Software Reuse and Technology Transfer
Software Productivity Consortium

Module Specifications as Program Family Generators
Grady H. Campbell, Jr.

A fundamental precept of the SCR design method is `localization of change' into information–
hiding modules. A module specification describes the common properties of a family of valid
implementations. The need for alternative implementations arises because of changing or
uncertain needs as well as alternate uses for a module. A set of valid alternative implementations
constitute a family because they are indistinguishable relative to the corresponding module
specification. The primary differences among the members of this family are indicated by the
module's “secrets", a set of design decisions that need to be easy to change or, equivalently, must
be resolved differently in order to support different needs. If these design decisions are formally
defined, alternative implementations can be made mechanically derivable. The model for this
formalization is programming languages, applied to the limited domain of programs as structured
artifacts.
The audiences for a module specification are the implementor of the module and the
implementors of client modules. The purpose of module specifications is to allow the
implementation of a module and of its clients to occur independently. Because client module
implementations depend on the interfaces of modules they reference, changes to common
properties are expensive and often difficult to make. However, any member of a module's family
of implementations is usable in principle as long as the contract implied by the module
specification is satisfied.
Normally, module specifications are viewed as a minimal constraint on an acceptable
implementation; the result is a (single) implementation that may be changed later. However, it is
often actually easier to create multiple implementations than it is to modify one implementation
to create another. The reason for this is the difficulty of discovering and accounting for all of the
implications of previous design decisions that are changing. When the implementor has an
explicit means of expressing each design decision and its implications in, and yet apart from, a
specific implementation, the result can be an explicit definition of a family of implementations.
The value of this is the leverage that comes from recognizing that common properties described
by a module specification imply similarities among alternative implementations and that
differences arise as implications of design decisions.
Although the concept of program families motivated the notion of module specifications (in
Parnas' paper on program families), subsequent work in this area has focused almost exclusively
on how to express the common properties of a family, either formally or at least precisely.
Strategies for multiple or alternative implementations have been limited to multiple physically–
distinct implementations, simple macro substitution, and conventionally–built special–purpose
program generators. The first two strategies are too weak and the third requires substantial effort.
An alternative is a general–purpose notation for formalizing the variations that distinguish
among the instances of each particular program family. Such a notation is a simple
generalization of the concepts of macroprocessors and syntax–directed editors. However, it can
provide the power of a special–purpose program generator with the transparency and
predictability of a program editor.
Such a notation, and its associated translator, was a key mechanism in both the development and
the operation of the Spectrum application generation environment. A derivative notation and

Software Productivity Consortium

August 27, 1993
Virginia Center of Excellence for Software Reuse and Technology Transfer
Software Productivity Consortium

translator supports the Synthesis approach to reuse which advocates the development and use of
adaptable modules, documentation, and test scenarios. Future work will relate this idea to the
concepts of object–oriented and transformational programming as representations of program
families and as mechanisms for reuse and automatic programming.
(Background reading: “On the Design and Development of Program Families" by D. Parnas in
IEEE Transactions on Software Engineering, March 1976)

Software Productivity Consortium

