Software Productivity Consortium August 27, 1993

Module Specifications as Program Family Generators
Grady H. Campbell, Jr.

A fundamental precept of the SCR design method is ‘localization of change' into information—
hiding modules. A module specification describes the common properties of a family of valid
implementations. The need for alternative implementations arises because of changing or
uncertain needs as well as alternate uses for a module. A set of valid alternative implementations
constitute a family because they are indistinguishable relative to the corresponding module
specification. The primary differences among the members of this family are indicated by the
module's “secrets", a set of design decisions that need to be easy to change or, equivalently, must
be resolved differently in order to support different needs. If these design decisions are formally
defined, alternative implementations can be made mechanically derivable. The model for this
formalization is programming languages, applied to the limited domain of programs as structured
artifacts.

The audiences for a module specification are the implementor of the module and the
implementors of client modules. The purpose of module specifications is to allow the
implementation of a module and of its clients to occur independently. Because client module
implementations depend on the interfaces of modules they reference, changes to common
properties are expensive and often difficult to make. However, any member of a module's family
of implementations is usable in principle as long as the contract implied by the module
specification is satisfied.

Normally, module specifications are viewed as a minimal constraint on an acceptable
implementation; the result is a (single) implementation that may be changed later. However, it is
often actually easier to create multiple implementations than it is to modify one implementation
to create another. The reason for this is the difficulty of discovering and accounting for all of the
implications of previous design decisions that are changing. When the implementor has an
explicit means of expressing each design decision and its implications in, and yet apart from, a
specific implementation, the result can be an explicit definition of a family of implementations.
The value of this is the leverage that comes from recognizing that common properties described
by a module specification imply similarities among alternative implementations and that
differences arise as implications of design decisions.

Although the concept of program families motivated the notion of module specifications (in
Parnas' paper on program families), subsequent work in this area has focused almost exclusively
on how to express the common properties of a family, either formally or at least precisely.
Strategies for multiple or alternative implementations have been limited to multiple physically—
distinct implementations, simple macro substitution, and conventionally—built special-purpose
program generators. The first two strategies are too weak and the third requires substantial effort.
An alternative is a general-purpose notation for formalizing the variations that distinguish
among the instances of each particular program family. Such a notation is a simple
generalization of the concepts of macroprocessors and syntax—directed editors. However, it can
provide the power of a special-purpose program generator with the transparency and
predictability of a program editor.

Such a notation, and its associated translator, was a key mechanism in both the development and
the operation of the Spectrum application generation environment. A derivative notation and

Software Productivity Consortium

Software Productivity Consortium August 27, 1993

translator supports the Synthesis approach to reuse which advocates the development and use of
adaptable modules, documentation, and test scenarios. Future work will relate this idea to the
concepts of object—oriented and transformational programming as representations of program
families and as mechanisms for reuse and automatic programming.

(Background reading: “On the Design and Development of Program Families" by D. Parnas in
IEEE Transactions on Software Engineering, March 1976)

Software Productivity Consortium

-Module Families as Module Generators
september 9. 1993
Grady H. Campbell, Jr.

This material is based in part upon work sponsored by the Advanced Research Projects Agencyunder Grant # MDA972—92—J—1018. The con-
tent does not necessarily reflect the position or the policy of the U.S. Government, and no official endorsement should be inferred.

N

g

Page 1 of 12

[A Simple Module Family 5

Module Specification

Alternative Implementations

- e
| |
b

e

| :

Lo)
Py
| |
L

Module family: An aggregation of program families
Module specification:

e Module interface = common properties

e Hidden design decisions (secrets) = variable properties

rginia
CENTER of
EXCELLENCE

Page 2of 12 Jfor Software Reuse and Technology Transfer

& Proposal R

Secrets should be formalized as variations of a module family,
making it constructable in the form of a module generator.

e Design decisions that are represented as variations can be
deferred or easily changed.

e Variations are a precise statement of requirements for
creating alternative implementations.

e When implemented by a module generator (i.e.,
metaprogram), variations enable reuse or rapid
replacement of alternative implementations

e Variations provide client implementors with specific,
meaningful decisions as simplified criteria for choosing
among alternative implementations to use.

Virginia
CENTER of
EXCELLENCE

Page 30of 12 Jor Software Reuse and Technology Transfer

& A Simple Example

Abstraction: Stack of integers

Interface:
— M ISH .
= T
= A

Secrets:

— implementation as array or linked list
= at least 2 alternative implementations

— storage capacity if implemented as an array

= Variation:
(array?:bound, list?) where ‘bound’ is a positive integer

Virginia
CENTER of
EXCELLENCE

Page 4 of 12 Jor Software Reuse and Technology Transfer

a Two Views of a Module Family A

parameters of variation

(create) ?

) (adapt)

a set of similar implementations

(create)

a module famil

alternative implementations

Virginia
CENTER Of
EXCELLENCE

Page 50f12 Jor Software Reuse and Technology Transfer

a Technologies for Implementing Module 3
Families

e Branching on runtime parameter values

e Physically distinct implementations

e Object-oriented language mechanisms (e.g., subclassing)

e Ada generics; C++ templates

e Programming language or word processor macros
(compile-time or link-time tailoring)

e Special-purpose generator (conventionally coded)

e Metaprogramming (precompile-time tailoring)

— Descriptive

— Prescriptive

Virginia
CENTER of
EXCELLENCE

Page 6 of 12 Jor Software Reuse and Technology Transfer

A Simple Metaprogramming Example (1) a

{” program (stack,
(name:target, types:list of (type:target),
size:(unbounded?, bounded?:target)))}
{” prog_impl (stack, (
{package {name}_stack is}
~forall (type, types, (
{type stack is record }
~select (
~ defined (size.unbounded) —> (
{elements: access stack_cell;})
~ defined (size.bounded) —> (
{elements:array (1..{size.bounded})
of item; top:0..{size.bounded};})

)

))’; bLZi)'fer__ops ((stack), types) —{ PUSH, POP, TOP}

Virginia
CENTER of
EXCELLENCE

Page 7 of 12 Jor Software Reuse and Technology Transfer

Control constructs:
e Substitution

e Sequencing

e Sclection

e Repetition

e Definition

e Instantiation
Data types:

e 'Target-valued

e Structure-valued

e List-valued

5

f Metaprogramming Concepts

{” program (stack,
(name:target, types:list of (type:target),
size:(unbounded?, bounded?:target)))}
{ ~ prog_impl (stack, (
package {name}_stackis}
~forall (type, types, (
{type stack is record }
~select (
~ defined (size.unbounded) —> (
{elements: access stack_cell;})
” defined (size.bounded) — > (
{elements:array (1..{size.bounded})
) of item; top:0..{size.bounded};})

;) i})ﬁfi:)gr_ops ((stack), types) —{PUSH, etc}

Virginia
CENTER of
EXCELLENCE

Page 8 of 12

Jor Software Reuse and Technology Transfer

(A Simple Metaprogramming Example (2) 3

{ ~ buffers.stack (active_processes, ({process}), (unbounded))}

—

package active_processes_stack is
type stack is record
elements: access stack cell;

{ ~ buffers.stack (active_processes, ({process}), (bounded:{32}))}

—

package active_processes_stack is
type stack is record
elements:array (1..32) of item;
top:0..32;

Virginia
CENTER o,
EXCELLENCE

Page 9 of 12 Jor Software Reuse and Technology Transfer

e Experience with Module Families R

e Spectrum
— 730 module families (TRF)
— used to create Spectrum and several applications

e Synthesis

— Rockwell (WordPerfect, TRF2)
— Boeing (Awk)

Virginia
\ CENTER of
EXCELLENCE

Page 10 of 12 Jor Software Reuse and Technology Transfer

& Generalized Module Families: v
Abstraction-Based Programming

e An ‘abstraction’ (i.e., abstract module) represents a family
of modules (the potential for variation in both specification
and implementation).

e Variabilities in a module family (i.e., requirement and
engineering decisions) imply parameterization of the
abstraction.

e System-generation-time application of decisions (e.g., from
an Application Model) to an abstract module produces a
tailored instance.

Metaprogramming supports defining and wusing abstract
modules.

Virginia
CENTER of
EXCELLENCE

Page 11 of 12 Jfor Software Reuse and Technology Transfer

/ Research Issues 3

e Verifying module families

— instance-level (e.g., extrapolatlon from statistically
representative coverage of variation sampling)

— family-level (e.g., parameters of variation are akin to
free variables in assertlons)

e Notations for representing variations in non-textual forms
— distinguished graphical forms
— color coding

— 2-layer (meta and instance level) forms

e Interactive tools for metaprogramming (e.g.,
editor/instance-viewer/debugger extensions)

Virginia
\ CENTER o
EXCELLENCE

Page 12 0of 12 Jor Software Reuse and Technology Transfer

